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Abstract—It is challenging to interpret hyperspectral images in an intuitive and meaningful way, as
they usually contain hundreds of dimensions. We develop a visualization tool for hyperspectral
images based on neural networks, which allows a user to specify the regions of interest, select
bands of interest, and obtain hyperspectral classification results in a scatterplot generated from
hyperspectral features. A cascade neural network is trained to generate an scatterplot that
matches the cluster centers labeled by the user. The inferred scatterplot not only shows the
clusters of points, but also reveals relationships of substances. The trained neural network can be
reused for time-varying hyperspectral data analysis without re-training. Our visualization solution
can keep domain experts in the analytical loop and provide an intuitive analysis of hyperspectral
images while identifying different substances, which are difficult to be realized using existing
hyperspectral image analysis techniques.

HYPERSPECTRAL CAMERA takes images of
objects at different wavelengths [1] and can pro-
vide abundant spectral information about different
objects, thereby being widely applied in many
disciplines, such as remote sensing and plant
science. Hyperspectral images can be modeled
as a hyperspectral cube (Figure 1). However, they
are different from traditional volume data, where
the spatial dimensions and the spectral dimension
have different physical meanings. The x and y
dimensions are the spatial axes of the objects in
the images. The z or λ axis is the spectral axis,
which contains spectral information of substances.
Here we define substances as objects that have the

same spectral characteristics. Each 2D position in
the xy-plane corresponds to a hyperspectral curve
that is formed by a series of pixels from the same
2D position of all images along the z or λ axis.

Many existing studies investigate how to
identify substances from hyperspectral images
through clustering, classification, or image fusion
techniques [2], [9], but could not meet emerging re-
quirements on finer-grained analysis. For example,
in our collaboration with plant scientists, we have
collected time-varying hyperspectral images of
plants. Our collaborators, who are domain experts
in the field of agronomy and horticulture, want
to study how to differentiate various parts of
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Figure 1. Illustration of hyperspectral images. Hyper-
spectral images (right) of a rice plant is taken over
a series of bands and a fused image (left) is usually
generated as the final result.

an object with different bands, leading to new
analysis requirements:

• Extract essential hyperspectral features that can
well represent the hyperspectral images.

• Support interactive exploration of substances
with classification or image fusion results.

However, most traditional methods [2], [4], [9]
act as black boxes and generate one-time results
from all the bands of a whole image, which are
less intuitive and flexible for further investigating
hyperspectral features. Meanwhile, these methods
often lack a support of interactive exploration.

Through detailed discussions with our domain
experts, several challenges have been identified to
meet these requirements. First, domain experts
want to interactively select regions of interest
(ROIs) and bands of interest (BOIs). While it
is relatively easy for users to define ROIs on
a 2D image, it is non-trivial to develop an
intuitive visualization interface to select BOIs from
hundreds or thousands of bands with significant
intensity variations. Second, the colors of image
fusion results often change according to different
user selections of regions or bands, making it
challenging for users to identify and track the
same substances, particularly with time-varying
data. Third, it is difficult for users to characterize
features from a large number of hyperspectral
bands and identify the correspondence between
hyperspectral features and image fusion results.

To address these challenges, we advocate com-
bining classification and visualization to develop
an interactive analytics pipeline for hyperspectral
images. Our work makes the following major
contributions:

• We explore and identify appropriate hyperspec-
tral information to support interactive selections
of ROIs and BOIs.

• We devise a new neural network based approach
to generate a scatterplot and facilitate users
to interactively examine the correspondence
between hyperspectral features and substances
by brushing the scatterplot.

• We use the neural network to generate pseudo
colors and lead to stable image fusion results
for identifying and tracking substances.

We have demonstrated the effectiveness of our
approach using datasets from remote sensing
and plant phenotyping. Our visualization solution
keeps domain experts in the analytical loop. It
can facilitate scientists from different domains
to effectively study hyperspectral images and
gain new discoveries that are not conveyed with
existing techniques.

Related Work
Hyperspectral images have been studied using

different approaches. We categorize the existing
hyperspectral image analysis methods into three
groups, clustering methods, classification methods,
and visualization methods, and summarize the
existing work as follows.

Clustering Methods
As substances are characterized by different

hyperspectral curves, an intuitive solution is to
cluster hyperspectral curves according to their
hyperspectral shapes. The most commonly used
clustering methods include k-means clustering,
hierarchical clustering, and mean-shift clustering.
Euclidean distance, Procrustes analysis, Spectral
Angular Mapping have been used as distance
measures for these clustering methods. However,
hyperspectral images can be affected by uneven
illumination [6], where hyperspectral curves that
belong to the same substance can have the same
hyperspectral shape but different scales. Thus,
clustering methods often incorrectly classify the
hyperspectral curves with small scales. In this
work, we advocate a combination of neural
networks and visualization methods instead of
clustering methods to identify substances with
uneven illumination.
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Classification Methods
Classification determines which substance a

pixel belongs to and usually requires training
labels. Machine learning has been widely used
for classification of pixels in hyperspectral images.
Maximum likelihood classification, support vector
machine (SVM), and convolutional neural network
(CNN) are commonly used methods for classifica-
tion [2]. Neural networks can handle the problem
of uneven illumination as they can be trained to
recognize scaled hyperspectral curves of the same
substance. However, classification methods only
give users inferred labels and most act as black
boxes. It is difficult for users to observe the dis-
tribution of the hyperspectral features or examine
how substances are similar or different in terms
of hyperspectral characteristics. To address these
issues, we develop new visualization capacities to
enable an interactive exploration of hyperspectral
features and substances.

Visualization Methods
Visualization is used to find a representation

that keeps or enhances hyperspectral information
in images. Image fusion is a widely used method
for hyperspectral images, where the original multi-
dimensional hyperspectral images are fused into
one color image after dimension reduction and
mapping of pseudo colors [9]. Some useful di-
mension reduction methods [4] include Principal
Component Analysis (PCA), Independent Compo-
nent Analysis (ICA), Linear Discriminant Analysis
(LDA), and t-Distributed Stochastic Neighbor
Embedding (t-SNE). However, if the differences
between two substances are relatively small com-
pared with the global maximum differences, these
substances will be very close in the projection.
Hence image fusion can also suffer from uneven
illumination. Image fusion with pseudo-colors can
only be treated as a basic type of visualization.
Many other visualization techniques remain to be
applied on hyperspectral images.

Cui et al. [3] developed a visualization tool for
image fusion using convex optimization. Kim et
al. [8] developed an interactive visualization tool
for hyperspectral images of historical documents
based on image fusion. Some work attempted to
generate fused images ready to be visualized on
a display [10], but did not directly deal with the
visualization of hyperspectral images.

One key issue in the existing work is that the
color of the same substance can be changed with
different user selections in hyperspectral images.
We want the visualization results to be stable
where the same substance always has the same
color. This is especially desired for the study of
time-varying hyperspectral images. We also want
to create a correspondence between a feature space
and an image space, which is not conveyed in
the current visualization methods. In our design,
instead of inferring labels, we use a neural network
to infer the positions of hyperspectral features
in a scatterplot. The neural network is no longer
used for classification but visualization. The neural
network can create stable visualization results once
it is trained. The inferred scatterplot helps users
observe the distribution of hyperspectral features
and understand the similarities among substances.
The selection of points in the scatterplot is used to
generate corresponding image fusion results where
the pseudo colors are generated by the neural
network and are resistant to uneven illumination.

Rationale
We develop an interactive visualization tool

to help scientists study hyperspectral images.
We summarize how we can make use of the
global statistics and visualization of dimension
reduction to design an interface. We first allow a
user to interactively select ROIs and BOIs. Then,
we calculate the hyperspectral features and use
these features to generate an initial scatterplot.
Numbered circles are shown at the center of
each cluster of labeled data in the scatterplot. As
the initial scatterplot may not be optimal, users
will define a target scatterplot by leveraging their
domain knowledge to drag numbered circles to
new positions interactively. After user definition,
a neural network will be trained to generate an
inferred scatterplot that matches the user-defined
scatterplot. Finally, the user can interactively
and intuitively select substances in the inferred
scatterplot and obtain corresponding image fusion
results for substances in the hyperspectral images.
Figure 2 shows the pipeline of our interactive tool.

Region and Band Selection
In the traditional methods, all the bands and

the whole image are usually used for image fusion.
However, analysis of the whole image may shadow

September/October 2021 3



Figure 2. The pipeline of our tool. Orange blocks
indicate user interaction. The dashed arrows mean
the steps that are followed once.

local details and the selection of all the bands may
be redundant. Thus, it is necessary for users to
interactively select ROIs and BOIs.

ROIs can be easily defined by users selecting
regions on a 2D image. However, the selection
of BOIs is less intuitive. In order to guide a user
in the selection, we want to extract certain global
information of hyperspectral images by deriving
metrics to evaluate each image. After consulting
with our collaborators who are the domain experts
in agronomy and horticulture, we noticed that the
bands that they are usually interested in correspond
to images with high contrast. Such an image
usually contains more information than images
with low contrast. Thus, we choose image entropy
and intensity mean as two metrics for identifying
images with appropriate contrast. Entropy H of an
image can be defined as H = −

∑255
i=0 pilog(pi),

where pi is the probability of an intensity value
i ∈ [0, 255] in an image. As the user usually tends
to select the peaks in a curve [12], the entropy
curve is effective in helping users select BOIs.

Other metrics can also be used to evaluate
an image. For example, the variance can be used
to evaluate the distribution of pixel values in an
image. Cross-correlation and mutual information
can be used to evaluate the change of consecu-
tive images. In our design, we choose entropy
empirically to guide users in the BOI selection.

Feature Derivation
To help users observe the correspondence

between hyperspectral features and image fusion
results, we map the hyperspectral curve of each
pixel to a point in an inferred scatterplot using
neural networks. Although neural networks can
extract important features from original hyperp-
sectral data, we found that better results can be
obtained with extra pre-defined statistical features
in our experiment.

To evaluate hyperspectral curves, many sta-

tistical metrics can be used. These metrics can
also be applied for the original data or derivatives
of hyperspectral curves. The empirically selected
metrics and derivatives are listed as follows:

• Metrics: mean, variance, skewness, and kurto-
sis.

• Derivatives: first and second derivatives.

These derived features can be used with the
original data to characterize the spectral curves
in a non-linear way [5]. The calculation of hyper-
spectral features can be done in parallel due to
independence of pixels. Thus, GPUs can be used
to accelerate the computation. We allow the user
to choose the hyperspectral features that will be
used as the input of a neural network. Although we
provide many features and some of them may be
redundant, the neural network can find important
features by assigning different weights to them
during training, which will be discussed in the
Network Training section.

Scatterplot Definition
We want the points in a scatterplot to form

distinct clusters so that the user can easily select
the clusters to study different substances. However,
such a scatterplot may not be readily available
until the neural network is trained. We want the
user to specify the locations of the clusters and
use the locations as the training target.

We provide an initial 2D scatterplot using
PCA. For each group of labeled data, we draw a
numbered circle indicating the cluster center in
the scatterplot. Users can then drag the circles
interactively based on their domain knowledge to
sparsely distribute these circles in the scatterplot.
The positions of the user-defined circles will be
used as the target for training a neural network
that will infer a new scatterplot.

As the input to the neural network is the
features of each pixel, we empirically chose to
use a fully connected cascade neural network [7].
Skip connections are used in the cascade neural
network. The same kind of idea has been widely
adopted in many convolutional neural networks
to improve the results.

Network Training
The network has two hidden layers, and the

numbers of units are empirically set as 10 and 3
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Figure 3. The design of our interface. Each image corresponds to one step in the pipeline. Dashed arrows mean
that the steps are followed only once.

for the first and second hidden layers, respectively.
The input of the network will be the derived
hyperspectral features at each 2D position, and
the output of the network will be a 2D position in
the inferred scatterplot. The training target is the
corresponding cluster center, which is defined by
the user after re-positioning the circles in the initial
scatterplot. The maximum number of epochs for
training is set to 2000. The actual number of
epochs that the network is trained for may be
less, as the training will stop early if the result
does not significantly improve anymore. To reduce
overfitting, the input data are split so that 70% is
used for training, 15% for validation, and 15% for
testing. The features extracted in the last hidden
layer of the neural network will be used as the
pseudo-colors of the inferred scatterplot and the
final visualized image.

Interface Design
We have designed our interface using MAT-

LAB that supports user interactions in multiple
steps. Figure 3 illustrates the interface and win-
dows of the steps, where a public dataset Kennedy
Space Center (KSC) is used as an example.

A user can select one of the hyperspectral
images to be shown in a window, where the user
can draw rectangular boxes to select ROIs. After
the selection of ROIs, the corresponding entropy
curve is shown in a plot, where the user can
select BOIs. Note that a selected range of the
entropy curve corresponds to a selection of the
original hyperspectral images. After the selection

of ROIs and BOIs, a set of hyperspectral features
selected by the user will be calculated for BOIs.
An initial scatterplot is generated using PCA.
In the initial scatterplot, circles are drawn for
individual groups of labeled data, where the center
of a circle is the mean position of the group of
points. In an ideal scatterplot, different clusters
should be well distinguished, while the points in
each cluster should be as close to the cluster center
as possible. However, the initial scatterplot may
not be desired as some circles overlap others, as
illustrated in Figure 3. Users can leverage their
domain knowledge to drag the circles to new
positions. The new positions of the clusters are
used as the training target for the neural network.
When the cascade neural network is trained, a
scatterplot can be inferred, which has a better
separation of different clusters than the initial
scatterplot. An example is shown in Figure 3.

The user can freely select points in the scatter-
plot by drawing polygons, and the corresponding
hyperspectral pixels are visualized as shown in
Figure 3. For image visualization, we also use the
features of the last hidden layer as the pseudo-
colors. Based on the correspondence between the
scatterplot and the visualized image, the user can
interactively and intuitively explore substances
and study their details. To help the user obtain
consistent results, we allow the user to define ROIs,
BOIs, and polygons using parameters and load
pre-defined scatterplots and pre-trained networks.
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Table 1. The sizes of different datasets. Note that not all
the pixels are labeled.

Dataset Image Sizes #Labeled Pixels
PaviaU 610*340*103 42776

Sorghum 420*320*244 144551
Maize 420*320*243 107319

Figure 4. The result of Pavia University.

Results
In this section, we show how our interface

can be used to explore hyperspectral images
interactively. We have tested our tool on a set
of datasets from several domains, including the
public datasets in remote sensing and the datasets
collected by our domain experts in plant science.
The image sizes and the number of labeled pixels
of three datasets are listed in Table 1. The results
of other datasets are not shown due to the page
limit.

Remote Sensing
Hyperspectral images have been widely studied

in remote sensing. These hyperspectral images are
usually taken by satellites or high-flying aircraft,
and regions in the groundtruths are manually
labeled. The labels may not be completely correct
in terms of hyperspectral characteristics as one
region may not be homogeneous and can contain
many substances. Thus, it is challenging to cluster
the pixels of each labeled region correctly.

Figure 41 shows the result of a public dataset

1Figures 4, 6 and 7 use the same layout. Without specifica-
tion, the scatterplots in our examples only contain the points
corresponding to labeled pixels.

Pavia University with nine labels: Asphalt, Mead-
ows, Gravel, Trees, Painted metal sheets, Bare
soil, Bitumen, Self-blocking bricks, and Shadows.
Figure 4(a) is one of the original hyperspectral
images. Figure 4(b) is the groundtruth with pseu-
docolors. The colorbar in the image shows the
correspondence between the labels and pseudo-
colors. In this and following examples, the whole
images are selected as the ROIs. Figure 4(c) shows
the selection of three BOIs using our interface.

Figure 4(d)(e)(f) are the initial scatterplot, the
user-defined scatterplot, and the inferred scatter-
plot, respectively. The colors in Figure 4(f) are
obtained using the features of the last hidden
layer of the cascade neural network to show
the correspondence between points in different
scatterplots. Our design can allow a user to select
different substances to gain intuitive visualization
results. It can be seen that the inferred scatterplot
shows distinct clusters of points that match the
numbered circles defined by the users in the user-
defined scatterplot. The points scattered between
clusters are usually boundaries between substances
in the original hyperspectral images.

The scatterplot generated in Figure 4(f) clearly
shows these nine substances based on domain
knowledge. Clusters four, two, and six are labeled
as Trees, Meadows, and Bare soil, respectively. In
our common sense, the region of Trees contains
more leaves while the region of Meadow contains
partially leaves and partially soil. Thus, Trees
should be close to Meadows, and Meadows should
be close to Bare soil. This knowledge is revealed
in Figure 4(f), where cluster four connects cluster
two and cluster two connects cluster six. Similarly,
Gravel, Self-block bricks, Asphalt, and Bitumen
are all products made from rocks and should have
similar characteristics. Thus, clusters three, eight,
one, and seven are relatively close to each other
in Figure 4(f). We define the relationship as the
relative positions of different substances. To the
best of our knowledge, this type of relationship
between substances in hyperspectral images has
never been presented in the previous work.

Figure 4(g)(h)(i) are the results generated using
ICA, LDA, and t-SNE, respectively. Similar to
Figure 4(f), their colors are obtained using the
features of the last hidden layer of the cascade
neural network. We can see that Figure 4(g)(h)(i)
cannot clearly reveal clusters of points. The
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Figure 5. Selections of points in the inferred scat-
terplot of dataset Pavia University. (a) The inferred
scatterplot where the user has made three different
selections. (b)(c)(d) are the image fusion results
corresponding to the points in the red, green, and
blue rectangles in (a).

Figure 6. The result of a sorghum plant.

existing machine learning based methods [2] can
generate labels similar to Figure 4(b). However,
they cannot tell the user if two labels are similar
or not in terms of hyperspectral characteristics.

With our tool, the user can further generate
a fused image interactively by selecting points
in the inferred scatterplot. For example, three
different clusters are selected in Figure 5(a).
Figure 5(b)(c)(d) show the visualization of Trees,
Meadows, and Bare soil, respectively. The shape of
each classified region is close to the groundtruth.

Plant Science
Hyperspectral imaging techniques for plants

have been available in recent years. Figure 6
shows the result of a sorghum plant. Here, two
BOIs are selected empirically, as shown in Fig-

Table 2. The MSE (10−3) of the inference using different
inputs.

Feature Type Org. 1st 2nd Org.+1st+2nd

HyperCurve 4.909 7.795 10.576 0.526

HyperMetrics 5.102 13.268 29.418 0.440

HyperCurve+
HyperMetrics 4.421 7.306 10.14 0.426

ure 6(c). Five different substances are labeled in
this dataset, including Stem, Leaves, Background,
Pot, and Frame. In the inferred scatterplot in
Figure 6(f), five clusters of points can be eas-
ily located, which correspond very well to the
five different substances in the groundtruth. The
spatial relationship between the real objects can
be inferred from the scatterplot. In Figure 6(f),
cluster one connects to cluster two, cluster two
connects to cluster three, and so on. In the original
images, the stem is in contact with the leaves, and
the leaves are in contact with the background.
However, as the leaves are not in contact with
the frame, there is no connection between cluster
two and cluster five. Figure 6(g)(h)(i) are the
results generated using ICA, LDA, and t-SNE,
respectively. Compared to the result from these
traditional methods, our inferred scatterplot not
only clearly separates different substances but also
preserves their relationship.

Figure 7 shows the result of a maize plant. The
five labels are the same as those of the sorghum
plant. Similar to the result of the sorghum plant,
the inferred scatterplot in Figure 7(f) can also
show five clusters of points clearly and reveal the
relationship among these clusters, compared to
the traditional methods in Figure 7(g)(h)(i).

Our colleagues in agronomy and horticulture
commend that our tool has facilitated them to
identify different parts of the plant, and these
results could not be obtained in the existing work
of plant hyperspectral image analysis.

Discussion
In this section, we compare the performance

of results generated using different features for
the neural network. We also show how we can
transfer the network trained for one dataset to
another dataset without re-training the network.

September/October 2021 7



Figure 7. The result of a maize plant.

Input Selection
In the existing methods based on neural net-

works, usually all hyperspectral images are directly
fed into a neural network. In our work, we have
chosen to use the derived hyperspectral features
based on statistical metrics and derivatives for the
input of the neural network. As there are several
combinations to choose, it is worth discussing
how these selected hyperspectral features would
impact the generation of a scatterplot. Thus, we
compute the Mean Square Error (MSE) of the
scatterplot generated using an individual combina-
tion of hyperspectral features with the scatterplot
generated using original hyperspectral images.

Table 2 shows the MSE of the inferred
scatterplot with different inputs. Org. represents
the original data. 1st and 2nd mean the first
and second derivatives. HyperCurve means the
original intensity data of hyperspectral images.
HyperMetrics means all the statistical metrics.
Thus, each entry in the table is the MSE value
corresponding to a hyperspectral feature generated
by a different combination. For example, the entry
of 1st and HyperCurve corresponds to the first
derivative of the original intensity data, and the
entry of 2nd and HyperMetrics corresponds to
all the statistical metrics applied on the second
derivative of the original intensity data. The +
operator means the concatenation of features. We
can see that the MSE of the inferred scatterplot

generally decreases with more features used.

Network Transfer
In our work, a neural network is trained to

generate a scatterplot. If a set of hyperspectral
images have similar spectral ranges and substances
as another set, the network trained for one dataset
can be directly used for another. We call this
process network transfer.

As shown in Figure 8, a sorghum plant and a
maize plant are imaged each day over eight days.
Then, we calculate the hyperspectral features using
the same BOIs as in Figure 6(c) or Figure 7(c).
Finally, we reuse the same neural network trained
in Figure 6 or Figure 7 to infer the scatterplots
for different sets of hyperspectral images. The
first and fourth rows in Figure 8 are samples of
the original hyperspectral images and the second
and fifth rows in Figure 8 are the corresponding
scatterplots. Here all the pixels are used to gen-
erate the scatterplot. The distribution of points in
the scatterplots is slightly different from that in
Figure 6(f) or Figure 7(f) as more points (most
corresponding to pixels on the boundaries between
objects) are included. It can be seen from these
scatterplots that, although the sizes of the plants
change over time, the positions of the clusters
remain roughly the same in the scatterplots. Thus,
this can facilitate a plant scientist to compare
datasets from different time points. For example,
if the scientist wants to examine how the leaves
change over time, the clusters on the lower left
corner can be selected from these scatterplots. For
sorghum or maize, there is one blue rectangle
at the same location in the scatterplots. If the
points in the blue rectangles are selected, the
corresponding leaves can be visualized, as shown
in the third and sixth rows of Figure 8.

If the scatterplots are stacked together, a 3D
scatterplot can be obtained. A 2D rectangle in the
xy view of the stacked scatterplot corresponds to
a 3D cuboid in the original stacked scatterplot. For
example, the 2D selections in Figure 9(a)(c) corre-
spond to the 3D selections in Figure 9(b)(d) that
further correspond to the leaves of sorghum and
maize in Figure 8, respectively. Our collaborators
have commended that network transfer and batch
selection greatly simplify the process of studying
different parts of the plant in a time-varying
situation, and provide an easier and more robust
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Figure 8. The result of a sorghum (maize) plant over eight days. First (fourth) row: one of the original
hyperspectral images of each day. Second (fifth) row: scatterplots generated using a pre-trained network.
Third (sixth) row: selected leaves corresponding to the points in the blue rectangles in the scatterplots in the
second (fifth) row. All the blue rectangles are located at exactly the same position.

Figure 9. Cluster selection in 3D stacked scatterplots. A 2D rectangle in the xy view of the stacked scatterplot
corresponds to a 3D cuboid in the original stacked scatterplot. (a) and (c) are the xy views. (b) and (d) are the
3D views. (a) and (b) show the selection of sorghum leaves. (c) and (d) show the selection of maize leaves.
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means to identify individual plant components and
track their dynamics.

Conclusion
Our solution keeps users in the analytical

loop and facilitates them to interactively explore
different substances from hyperspectral images.
We also show that once a network is trained, it
can be easily transferred to other datasets with
similar hyperspectral contents. This can greatly
help scientists study large sets of time-varying hy-
perspectral images with simple selections. We have
demonstrated the effectiveness of our techniques
with the examples in remote sensing and plant
science. Our analytical pipeline and visual designs
could be generalized and applied to other similar
applications involving hyperspectral images.

We note that in an initial scatterplot, for the
same substance, the points are usually close to
each other and the colors are also similar, which
provides a good indication for a domain expert
to define cluster centers. If needed, the user can
adjust cluster centers to improve image fusion
results. While this is conducted in a trial-and-
error manner, our domain experts usually can
generate desired results with a few iterations,
given that they have substantial knowledge of
hyperspectral images and image fusion results,
and also there are a limited number of substances.
However, with an increasing number of substances
and less experienced users, it can become difficult
for users to manually identify and drag the
circles to new positions. We are improving the
scalability of our approach by exploiting automatic
or semi-automatic methods (e.g, the force-directed
method [11]) and facilitating users to select and
separate the circles. We plan to continue this study
and report corresponding findings in our future
work. In addition, the features and neural networks
are selected empirically in our current solution,
and we would like to explore more hyperspectral
features and more types of neural networks to
increase the quality of the scatterplot.

ACKNOWLEDGMENT
This work has been supported by the National

Science Foundation through grants OIA-1736192,
DBI-1564621, IIS-1652846, and IIS-1423487. The
authors are grateful to the staff members at
the University of Nebraska-Lincoln’s Greenhouse

Innovation Center for their support in the data
collection process.

REFERENCES
1. C.-I. Chang. Hyperspectral imaging: techniques for

spectral detection and classification, vol. 1. Springer

Science & Business Media, 2003.

2. Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi. Deep

feature extraction and classification of hyperspectral

images based on convolutional neural networks. IEEE

Transactions on Geoscience and Remote Sensing,

54(10):6232–6251, 2016.

3. M. Cui, A. Razdan, J. Hu, and P. Wonka. Interactive

hyperspectral image visualization using convex optimiza-

tion. IEEE Transactions on Geoscience and Remote

Sensing, 47(6):1673–1684, 2009.

4. B. M. Devassy and S. George. Dimensionality reduction

and visualisation of hyperspectral ink data using t-SNE.

Forensic science international, 311:110194, 2020.

5. X. Geng, L. Ji, and K. Sun. Principal skewness

analysis: algorithm and its application for multispec-

tral/hyperspectral images indexing. IEEE Geoscience

and Remote Sensing Letters, 11(10):1821–1825, 2014.

6. G. Healey and D. Slater. Models and methods for au-

tomated material identification in hyperspectral imagery

acquired under unknown illumination and atmospheric

conditions. IEEE Transactions on Geoscience and

Remote Sensing, 37(6):2706–2717, 1999.

7. M. Kawato, Y. Maeda, Y. Uno, and R. Suzuki. Trajectory

formation of arm movement by cascade neural network

model based on minimum torque-change criterion. Bio-

logical cybernetics, 62(4):275–288, 1990.

8. S. J. Kim, S. Zhuo, F. Deng, C.-W. Fu, and M. Brown.

Interactive visualization of hyperspectral images of his-

torical documents. IEEE Transactions on Visualization

and Computer Graphics, 16(6):1441–1448, 2010.

9. S. Li, X. Kang, and J. Hu. Image fusion with guided

filtering. IEEE Transactions on Image Processing,

22(7):2864–2875, 2013.

10. A. Meka and S. Chaudhuri. A technique for simultaneous

visualization and segmentation of hyperspectral data.

IEEE Transactions on Geoscience and Remote Sensing,

53(4):1707–1717, 2015.

11. J. Tang, J. Liu, M. Zhang, and Q. Mei. Visualizing large-

scale and high-dimensional data. In Proceedings of the

25th international conference on world wide web, pp.

287–297, 2016.

12. F. Zhu, Y. Pan, T. Gao, H. Walia, and H. Yu. Interactive

visualization of time-varying hyperspectral plant images

for high-throughput phenotyping. In 2019 IEEE Inter-

10 IEEE Computer Graphics and Applications



national Conference on Big Data (Big Data), pp. 1274–

1281. IEEE, 2019.

Feiyu Zhu is a postdoctoral researcher at Sichuan Uni-
versity. He received a B.S. degree from the University
of Electronic Science and Technology, China, an M.S.
degree from Clemson University, and a Ph.D. degree
in Computer Science from the University of Nebraska-
Lincoln. He has been studying the visualization of
hyperspectral images and plant phenotyping. This
work was conducted as part of his Ph.D. study. Contact
him at feiyu.zhu@huskers.unl.edu.

Yu Pan is a Ph.D. student in the Department of
Computer Science and Engineering at the University of
Nebraska-Lincoln. He works on scientific visualization
with deep learning techniques. He obtained a B.S.
degree from the University of Electronic Science
and Technology, China, and an M.S. degree from
the Illinois Institute of Technology. Contact him at
yu@huskers.unl.edu.

Tian Gao is a Ph.D. student in the Department of
Computer Science and Engineering at the Univer-
sity of Nebraska-Lincoln. His research interest is
on plant phenotyping and phenotype data analytics.
He obtained a B.S. degree from AnHui University,
China, and an M.S. degree from the University of
Science and Technology, China. Contact him at
tgao@huskers.unl.edu.

Harkamal Walia is an associate professor in the
Department of Agronomy and Horticulture at the
University of Nebraska-Lincoln. His research focuses
on crop abiotic stress tolerance, phenomics, and
functional genomics. He obtained a B.S. degree in
Plant Breeding and Genetics from Punjab Agricultural
University, India, and a Ph.D. degree in Plant Biology
from the University of California, Riverside. Contact
him at hwalia2@unl.edu.

Hongfeng Yu is an associate professor in the Depart-
ment of Computer Science and Engineering at the Uni-
versity of Nebraska-Lincoln. His research focuses on
data analysis and visualization, and high-performance
computing. He received a B.S. degree and an M.S.
degree in Computer Science from Zhejiang University,
China, and a Ph.D. degree in Computer Science from
the University of California, Davis. Contact him at
hfyu@unl.edu.

September/October 2021 11


	Related Work
	Clustering Methods
	Classification Methods
	Visualization Methods

	Rationale
	Region and Band Selection
	Feature Derivation
	Scatterplot Definition
	Network Training

	Interface Design
	Results
	Remote Sensing
	Plant Science

	Discussion
	Input Selection
	Network Transfer

	Conclusion
	ACKNOWLEDGMENT
	REFERENCES
	Biographies
	Feiyu Zhu
	Yu Pan
	Tian Gao
	Harkamal Walia
	Hongfeng Yu


